Module docstring
{"# Subgroups generated by an element
Tags
subgroup, subgroups
"}
{"# Subgroups generated by an element
subgroup, subgroups
"}
Subgroup.range_zpowersHom
theorem
(g : G) : (zpowersHom G g).range = zpowers g
theorem range_zpowersHom (g : G) : (zpowersHom G g).range = zpowers g := rfl
Subgroup.instCountableSubtypeMemZpowers
instance
(a : G) : Countable (zpowers a)
@[to_additive]
instance (a : G) : Countable (zpowers a) := Set.surjective_onto_range.countable
AddSubgroup.range_zmultiplesHom
theorem
(a : A) : (zmultiplesHom A a).range = zmultiples a
@[simp]
theorem range_zmultiplesHom (a : A) : (zmultiplesHom A a).range = zmultiples a :=
rfl
AddSubgroup.intCast_mul_mem_zmultiples
theorem
: ↑(k : ℤ) * r ∈ zmultiples r
@[simp]
theorem intCast_mul_mem_zmultiples : ↑(k : ℤ) * r ∈ zmultiples r := by
simpa only [← zsmul_eq_mul] using zsmul_mem_zmultiples r k
AddSubgroup.intCast_mem_zmultiples_one
theorem
: ↑(k : ℤ) ∈ zmultiples (1 : R)
@[simp]
theorem intCast_mem_zmultiples_one : ↑(k : ℤ) ∈ zmultiples (1 : R) :=
mem_zmultiples_iff.mp ⟨k, by simp⟩
Int.range_castAddHom
theorem
{A : Type*} [AddGroupWithOne A] : (Int.castAddHom A).range = AddSubgroup.zmultiples 1
@[simp] lemma Int.range_castAddHom {A : Type*} [AddGroupWithOne A] :
(Int.castAddHom A).range = AddSubgroup.zmultiples 1 := by
ext a
simp_rw [AddMonoidHom.mem_range, Int.coe_castAddHom, AddSubgroup.mem_zmultiples_iff, zsmul_one]
Subgroup.centralizer_closure
theorem
(S : Set G) : centralizer (closure S : Set G) = ⨅ g ∈ S, centralizer (zpowers g : Set G)
@[to_additive]
theorem centralizer_closure (S : Set G) :
centralizer (closure S : Set G) = ⨅ g ∈ S, centralizer (zpowers g : Set G) :=
le_antisymm
(le_iInf fun _ => le_iInf fun hg => centralizer_le <| zpowers_le.2 <| subset_closure hg) <|
le_centralizer_iff.1 <|
(closure_le _).2 fun g =>
SetLike.mem_coeSetLike.mem_coe.2 ∘ zpowers_le.1 ∘ le_centralizer_iff.1 ∘ iInf_le_of_le g ∘ iInf_le _
Subgroup.center_eq_iInf
theorem
(S : Set G) (hS : closure S = ⊤) : center G = ⨅ g ∈ S, centralizer (zpowers g)
@[to_additive]
theorem center_eq_iInf (S : Set G) (hS : closure S = ⊤) :
center G = ⨅ g ∈ S, centralizer (zpowers g) := by
rw [← centralizer_univ, ← coe_top, ← hS, centralizer_closure]
Subgroup.center_eq_infi'
theorem
(S : Set G) (hS : closure S = ⊤) : center G = ⨅ g : S, centralizer (zpowers (g : G))
@[to_additive]
theorem center_eq_infi' (S : Set G) (hS : closure S = ⊤) :
center G = ⨅ g : S, centralizer (zpowers (g : G)) := by
rw [center_eq_iInf S hS, ← iInf_subtype'']