Module docstring
{"# PUnit is a commutative group
This file collects facts about algebraic structures on the one-element type, e.g. that it is a commutative ring. "}
{"# PUnit is a commutative group
This file collects facts about algebraic structures on the one-element type, e.g. that it is a commutative ring. "}
PUnit.commGroup
      instance
     : CommGroup PUnit
        
      PUnit.instOne
      instance
     : One PUnit
        @[to_additive] instance : One PUnit where one := unit
        PUnit.instMul_mathlib
      instance
     : Mul PUnit
        @[to_additive] instance : Mul PUnit where mul _ _ := unit
        PUnit.instDiv_mathlib
      instance
     : Div PUnit
        @[to_additive] instance : Div PUnit where div _ _ := unit
        PUnit.instInv
      instance
     : Inv PUnit
        @[to_additive] instance : Inv PUnit where inv _ := unit
        PUnit.one_eq
      theorem
     : (1 : PUnit) = unit
        @[to_additive (attr := simp)] lemma one_eq : (1 : PUnit) = unit := rfl
        PUnit.mul_eq
      theorem
     (x y : PUnit) : x * y = unit
        @[to_additive] lemma mul_eq (x y : PUnit) : x * y = unit := rfl
        PUnit.div_eq
      theorem
     (x y : PUnit) : x / y = unit
        @[to_additive (attr := simp)] lemma div_eq (x y : PUnit) : x / y = unit := rfl
        PUnit.inv_eq
      theorem
     (x : PUnit) : x⁻¹ = unit