Module docstring
{"# The unit of the natural numbers ","#### Units "}
{"# The unit of the natural numbers ","#### Units "}
Nat.units_eq_one
theorem
(u : ℕˣ) : u = 1
lemma units_eq_one (u : ℕℕˣ) : u = 1 := Units.ext <| Nat.eq_one_of_dvd_one ⟨u.inv, u.val_inv.symm⟩
Nat.addUnits_eq_zero
theorem
(u : AddUnits ℕ) : u = 0
lemma addUnits_eq_zero (u : AddUnits ℕ) : u = 0 :=
AddUnits.ext <| (Nat.eq_zero_of_add_eq_zero u.val_neg).1
Nat.unique_units
instance
: Unique ℕˣ
instance unique_units : Unique ℕℕˣ where
default := 1
uniq := Nat.units_eq_one
Nat.unique_addUnits
instance
: Unique (AddUnits ℕ)
instance unique_addUnits : Unique (AddUnits ℕ) where
default := 0
uniq := Nat.addUnits_eq_zero
Nat.isUnit_iff
theorem
{n : ℕ} : IsUnit n ↔ n = 1
/-- Alias of `isUnit_iff_eq_one` for discoverability. -/
protected lemma isUnit_iff {n : ℕ} : IsUnitIsUnit n ↔ n = 1 := isUnit_iff_eq_one
Nat.isAddUnit_iff
theorem
{n : ℕ} : IsAddUnit n ↔ n = 0
/-- Alias of `isAddUnit_iff_eq_zero` for discoverability. -/
protected lemma isAddUnit_iff {n : ℕ} : IsAddUnitIsAddUnit n ↔ n = 0 := isAddUnit_iff_eq_zero