doc-next-gen

Mathlib.Algebra.Group.Nat.Units

Module docstring

{"# The unit of the natural numbers ","#### Units "}

Nat.units_eq_one theorem
(u : ℕˣ) : u = 1
Full source
lemma units_eq_one (u : ℕˣ) : u = 1 := Units.ext <| Nat.eq_one_of_dvd_one ⟨u.inv, u.val_inv.symm⟩
Multiplicative Units of Natural Numbers are Trivial
Informal description
For any multiplicative unit $u$ of the natural numbers, $u$ is equal to $1$.
Nat.addUnits_eq_zero theorem
(u : AddUnits ℕ) : u = 0
Full source
lemma addUnits_eq_zero (u : AddUnits ) : u = 0 :=
  AddUnits.ext <| (Nat.eq_zero_of_add_eq_zero u.val_neg).1
Additive Units of Natural Numbers are Trivial
Informal description
For any additive unit $u$ of the natural numbers, $u$ is equal to $0$.
Nat.unique_units instance
: Unique ℕˣ
Full source
instance unique_units : Unique ℕˣ where
  default := 1
  uniq := Nat.units_eq_one
Uniqueness of Multiplicative Units in Natural Numbers
Informal description
The multiplicative units of the natural numbers form a unique type, with the only unit being $1$.
Nat.unique_addUnits instance
: Unique (AddUnits ℕ)
Full source
instance unique_addUnits : Unique (AddUnits ) where
  default := 0
  uniq := Nat.addUnits_eq_zero
Uniqueness of Additive Units in Natural Numbers
Informal description
The additive units of the natural numbers form a unique type, with the only unit being $0$.
Nat.isUnit_iff theorem
{n : ℕ} : IsUnit n ↔ n = 1
Full source
/-- Alias of `isUnit_iff_eq_one` for discoverability. -/
protected lemma isUnit_iff {n : } : IsUnitIsUnit n ↔ n = 1 := isUnit_iff_eq_one
Characterization of Multiplicative Units in Natural Numbers: $n$ is a unit iff $n = 1$
Informal description
For any natural number $n$, $n$ is a multiplicative unit if and only if $n = 1$.
Nat.isAddUnit_iff theorem
{n : ℕ} : IsAddUnit n ↔ n = 0
Full source
/-- Alias of `isAddUnit_iff_eq_zero` for discoverability. -/
protected lemma isAddUnit_iff {n : } : IsAddUnitIsAddUnit n ↔ n = 0 := isAddUnit_iff_eq_zero
Characterization of Additive Units in Natural Numbers: $n$ is an additive unit iff $n = 0$
Informal description
For any natural number $n$, $n$ is an additive unit if and only if $n = 0$.