Module docstring
{"# Multiplicative homomorphisms respect semiconjugation and commutation. "}
{"# Multiplicative homomorphisms respect semiconjugation and commutation. "}
SemiconjBy.map
theorem
[MulHomClass F M N] (h : SemiconjBy a x y) (f : F) : SemiconjBy (f a) (f x) (f y)
@[to_additive (attr := simp)]
protected theorem SemiconjBy.map [MulHomClass F M N] (h : SemiconjBy a x y) (f : F) :
SemiconjBy (f a) (f x) (f y) := by simpa only [SemiconjBy, map_mul] using congr_arg f h
Commute.map
theorem
[MulHomClass F M N] (h : Commute x y) (f : F) : Commute (f x) (f y)
@[to_additive (attr := simp)]
protected theorem Commute.map [MulHomClass F M N] (h : Commute x y) (f : F) : Commute (f x) (f y) :=
SemiconjBy.map h f
SemiconjBy.of_map
theorem
[MulHomClass F M N] (f : F) (hf : Function.Injective f) (h : SemiconjBy (f a) (f x) (f y)) : SemiconjBy a x y
@[to_additive (attr := simp)]
protected theorem SemiconjBy.of_map [MulHomClass F M N] (f : F) (hf : Function.Injective f)
(h : SemiconjBy (f a) (f x) (f y)) : SemiconjBy a x y :=
hf (by simpa only [SemiconjBy, map_mul] using h)
Commute.of_map
theorem
[MulHomClass F M N] {f : F} (hf : Function.Injective f) (h : Commute (f x) (f y)) : Commute x y
@[to_additive (attr := simp)]
theorem Commute.of_map [MulHomClass F M N] {f : F} (hf : Function.Injective f)
(h : Commute (f x) (f y)) : Commute x y :=
hf (by simpa only [map_mul] using h.eq)