Module docstring
{"# Vectors
Vector α n is a thin wrapper around Array α for arrays of fixed size n.
","### ForIn instance ","### ForM instance ","### ToStream instance ","### Lexicographic ordering "}
{"# Vectors
Vector α n is a thin wrapper around Array α for arrays of fixed size n.
","### ForIn instance ","### ForM instance ","### ToStream instance ","### Lexicographic ordering "}
Vector
      structure
    (α : Type u) (n : Nat) extends Array α
        /-- `Vector α n` is an `Array α` with size `n`. -/
structure Vector (α : Type u) (n : Nat) extends Array α where
  /-- Array size. -/
  size_toArray : toArray.size = n
deriving Repr, DecidableEq
        instReprVector
      instance
     {α✝} {n✝} [Repr✝ α✝] : Repr✝ (@Vector✝ α✝ n✝)
        Repr, DecidableEq
        instDecidableEqVector
      instance
     {α✝} {n✝} [DecidableEq✝ α✝] : DecidableEq✝ (@Vector✝ α✝ n✝)
        DecidableEq
        Array.toVector
      abbrev
     (xs : Array α) : Vector α xs.size
        
      Vector.term#v[_,]
      definition
     : Lean.ParserDescr✝
        
      Vector.elimAsArray
      definition
     {motive : Vector α n → Sort u} (mk : ∀ (xs : Array α) (ha : xs.size = n), motive ⟨xs, ha⟩) :
  (xs : Vector α n) → motive xs
        
      Vector.elimAsList
      definition
     {motive : Vector α n → Sort u} (mk : ∀ (l : List α) (ha : l.length = n), motive ⟨⟨l⟩, ha⟩) :
  (xs : Vector α n) → motive xs
        
      Vector.emptyWithCapacity
      definition
     (capacity : Nat) : Vector α 0
        /-- Make an empty vector with pre-allocated capacity. -/
@[inline] def emptyWithCapacity (capacity : Nat) : Vector α 0 := ⟨.mkEmpty capacity, rfl⟩
        Vector.mkEmpty
      abbrev
    
        @[deprecated emptyWithCapacity (since := "2025-03-12"), inherit_doc emptyWithCapacity]
abbrev mkEmpty := @emptyWithCapacity
        Vector.replicate
      definition
     (n) (v : α) : Vector α n
        /-- Makes a vector of size `n` with all cells containing `v`. -/
@[inline] def replicate (n) (v : α) : Vector α n := ⟨Array.replicate n v, by simp⟩
        Vector.mkVector
      abbrev
    
        @[deprecated replicate (since := "2025-03-18")]
abbrev mkVector := @replicate
        Vector.instNonemptyOfNatNat
      instance
     : Nonempty (Vector α 0)
        
      Vector.instNonempty
      instance
     [Nonempty α] : Nonempty (Vector α n)
        instance [Nonempty α] : Nonempty (Vector α n) := ⟨replicate _ Classical.ofNonempty⟩
        Vector.singleton
      definition
     (v : α) : Vector α 1
        /-- Returns a vector of size `1` with element `v`. -/
@[inline] def singleton (v : α) : Vector α 1 := ⟨#[v], rfl⟩
        Vector.instInhabited
      instance
     [Inhabited α] : Inhabited (Vector α n)
        
      Vector.get
      definition
     (xs : Vector α n) (i : Fin n) : α
        /-- Get an element of a vector using a `Fin` index. -/
@[inline] def get (xs : Vector α n) (i : Fin n) : α :=
  xs.toArray[(i.cast xs.size_toArray.symm).1]
        Vector.uget
      definition
     (xs : Vector α n) (i : USize) (h : i.toNat < n) : α
        
      Vector.instGetElemNatLt
      instance
     : GetElem (Vector α n) Nat α fun _ i => i < n
        
      Vector.contains
      definition
     [BEq α] (xs : Vector α n) (a : α) : Bool
        
      Vector.Mem
      structure
     (xs : Vector α n) (a : α)
        /-- `a ∈ v` is a predicate which asserts that `a` is in the vector `v`. -/
structure Mem (xs : Vector α n) (a : α) : Prop where
  val : a ∈ xs.toArray
        Vector.instMembership
      instance
     : Membership α (Vector α n)
        instance : Membership α (Vector α n) where
  mem := Mem
        Vector.getD
      definition
     (xs : Vector α n) (i : Nat) (default : α) : α
        
      Vector.back!
      definition
     [Inhabited α] (xs : Vector α n) : α
        
      Vector.back?
      definition
     (xs : Vector α n) : Option α
        
      Vector.back
      definition
     [NeZero n] (xs : Vector α n) : α
        /-- The last element of a non-empty vector. -/
@[inline] def back [NeZero n] (xs : Vector α n) : α :=
  xs[n - 1]'(Nat.sub_one_lt (NeZero.ne n))
        Vector.head
      definition
     [NeZero n] (xs : Vector α n)
        /-- The first element of a non-empty vector.  -/
@[inline] def head [NeZero n] (xs : Vector α n) := xs[0]'(Nat.pos_of_neZero n)
        Vector.push
      definition
     (xs : Vector α n) (x : α) : Vector α (n + 1)
        /-- Push an element `x` to the end of a vector. -/
@[inline] def push (xs : Vector α n) (x : α) : Vector α (n + 1) :=
  ⟨xs.toArray.push x, by simp⟩
        Vector.pop
      definition
     (xs : Vector α n) : Vector α (n - 1)
        /-- Remove the last element of a vector. -/
@[inline] def pop (xs : Vector α n) : Vector α (n - 1) :=
  ⟨Array.pop xs.toArray, by simp⟩
        Vector.setIfInBounds
      definition
     (xs : Vector α n) (i : Nat) (x : α) : Vector α n
        /--
Set an element in a vector using a `Nat` index. Returns the vector unchanged if the index is out of
bounds.
This will perform the update destructively provided that the vector has a reference count of 1.
-/
@[inline] def setIfInBounds (xs : Vector α n) (i : Nat) (x : α) : Vector α n :=
  ⟨xs.toArray.setIfInBounds i x, by simp⟩
        Vector.set!
      definition
     (xs : Vector α n) (i : Nat) (x : α) : Vector α n
        /--
Set an element in a vector using a `Nat` index. Panics if the index is out of bounds.
This will perform the update destructively provided that the vector has a reference count of 1.
-/
@[inline] def set! (xs : Vector α n) (i : Nat) (x : α) : Vector α n :=
  ⟨xs.toArray.set! i x, by simp⟩
        Vector.foldlM
      definition
     [Monad m] (f : β → α → m β) (b : β) (xs : Vector α n) : m β
        
      Vector.foldrM
      definition
     [Monad m] (f : α → β → m β) (b : β) (xs : Vector α n) : m β
        
      Vector.foldl
      definition
     (f : β → α → β) (b : β) (xs : Vector α n) : β
        
      Vector.foldr
      definition
     (f : α → β → β) (b : β) (xs : Vector α n) : β
        
      Vector.append
      definition
     (xs : Vector α n) (ys : Vector α m) : Vector α (n + m)
        /-- Append two vectors. -/
@[inline] def append (xs : Vector α n) (ys : Vector α m) : Vector α (n + m) :=
  ⟨xs.toArray ++ ys.toArray, by simp⟩
        Vector.instHAppendHAddNat
      instance
     : HAppend (Vector α n) (Vector α m) (Vector α (n + m))
        
      Vector.cast
      definition
     (h : n = m) (xs : Vector α n) : Vector α m
        /-- Creates a vector from another with a provably equal length. -/
@[inline] protected def cast (h : n = m) (xs : Vector α n) : Vector α m :=
  ⟨xs.toArray, by simp [*]⟩
        Vector.take
      definition
     (xs : Vector α n) (i : Nat) : Vector α (min i n)
        
      Vector.take_eq_extract
      theorem
     (xs : Vector α n) (i : Nat) : xs.take i = xs.extract 0 i
        
      Vector.drop
      definition
     (xs : Vector α n) (i : Nat) : Vector α (n - i)
        /--
Deletes the first `i` elements of a vector. If `i` is greater than or equal to the size of the
vector then the empty vector is returned.
-/
@[inline] def drop (xs : Vector α n) (i : Nat) : Vector α (n - i) :=
  ⟨xs.toArray.drop i, by simp⟩
        Vector.drop_eq_cast_extract
      theorem
     (xs : Vector α n) (i : Nat) : xs.drop i = (xs.extract i n).cast (by simp)
        @[simp] theorem drop_eq_cast_extract (xs : Vector α n) (i : Nat) :
    xs.drop i = (xs.extract i n).cast (by simp) := by
  simp [drop, extract, Vector.cast]
        Vector.shrink
      definition
     (xs : Vector α n) (i : Nat) : Vector α (min i n)
        
      Vector.shrink_eq_take
      theorem
     (xs : Vector α n) (i : Nat) : xs.shrink i = xs.take i
        
      Vector.map
      definition
     (f : α → β) (xs : Vector α n) : Vector β n
        /-- Maps elements of a vector using the function `f`. -/
@[inline] def map (f : α → β) (xs : Vector α n) : Vector β n :=
  ⟨xs.toArray.map f, by simp⟩
        Vector.mapIdx
      definition
     (f : Nat → α → β) (xs : Vector α n) : Vector β n
        /-- Maps elements of a vector using the function `f`, which also receives the index of the element. -/
@[inline] def mapIdx (f : Nat → α → β) (xs : Vector α n) : Vector β n :=
  ⟨xs.toArray.mapIdx f, by simp⟩
        Vector.mapFinIdx
      definition
     (xs : Vector α n) (f : (i : Nat) → α → (h : i < n) → β) : Vector β n
        /-- Maps elements of a vector using the function `f`,
which also receives the index of the element, and the fact that the index is less than the size of the vector. -/
@[inline] def mapFinIdx (xs : Vector α n) (f : (i : Nat) → α → (h : i < n) → β) : Vector β n :=
  ⟨xs.toArray.mapFinIdx (fun i a h => f i a (by simpa [xs.size_toArray] using h)), by simp⟩
        Vector.mapM
      definition
     [Monad m] (f : α → m β) (xs : Vector α n) : m (Vector β n)
        /-- Map a monadic function over a vector. -/
@[inline] def mapM [Monad m] (f : α → m β) (xs : Vector α n) : m (Vector β n) := do
  go 0 (Nat.zero_le n) #v[]
where
  go (k : Nat) (h : k ≤ n) (acc : Vector β k) : m (Vector β n) := do
    if h' : k < n then
      go (k+1) (by omega) (acc.push (← f xs[k]))
    else
      return acc.cast (by omega)
        Vector.forM
      definition
     [Monad m] (xs : Vector α n) (f : α → m PUnit) : m PUnit
        
      Vector.flatMapM
      definition
     [Monad m] (xs : Vector α n) (f : α → m (Vector β k)) : m (Vector β (n * k))
        @[inline] def flatMapM [Monad m] (xs : Vector α n) (f : α → m (Vector β k)) : m (Vector β (n * k)) := do
  go 0 (Nat.zero_le n) (#v[].cast (by omega))
where
  go (i : Nat) (h : i ≤ n) (acc : Vector β (i * k)) : m (Vector β (n * k)) := do
    if h' : i < n then
      go (i+1) (by omega) ((acc ++ (← f xs[i])).cast (Nat.succ_mul i k).symm)
    else
      return acc.cast (by congr; omega)
        Vector.mapFinIdxM
      definition
     {α : Type u} {β : Type v} {m : Type v → Type w} [Monad m] (xs : Vector α n) (f : (i : Nat) → α → (h : i < n) → m β) :
  m (Vector β n)
        /-- Variant of `mapIdxM` which receives the index `i` along with the bound `i < n. -/
@[inline]
def mapFinIdxM {α : Type u} {β : Type v} {m : Type v → Type w} [Monad m]
    (xs : Vector α n) (f : (i : Nat) → α → (h : i < n) → m β) : m (Vector β n) :=
  let rec @[specialize] map (i : Nat) (j : Nat) (inv : i + j = n) (ys : Vector β (n - i)) : m (Vector β n) := do
    match i, inv with
    | 0,    _  => pure ys
    | i+1, inv =>
      have j_lt : j < n := by
        rw [← inv, Nat.add_assoc, Nat.add_comm 1 j, Nat.add_comm]
        apply Nat.le_add_right
      have : i + (j + 1) = n := by rw [← inv, Nat.add_comm j 1, Nat.add_assoc]
      map i (j+1) this ((ys.push (← f j xs[j] j_lt)).cast (by omega))
  map n 0 rfl (#v[].cast (by simp))
        Vector.mapIdxM
      definition
     {α : Type u} {β : Type v} {m : Type v → Type w} [Monad m] (f : Nat → α → m β) (xs : Vector α n) : m (Vector β n)
        
      Vector.firstM
      definition
     {α : Type u} {m : Type v → Type w} [Alternative m] (f : α → m β) (xs : Vector α n) : m β
        @[inline] def firstM {α : Type u} {m : Type v → Type w} [Alternative m] (f : α → m β) (xs : Vector α n) : m β :=
  xs.toArray.firstM f
        Vector.flatten
      definition
     (xs : Vector (Vector α n) m) : Vector α (m * n)
        @[inline] def flatten (xs : Vector (Vector α n) m) : Vector α (m * n) :=
  ⟨(xs.toArray.map Vector.toArray).flatten,
    by rcases xs; simp_all [Function.comp_def, Array.map_const']⟩
        Vector.flatMap
      definition
     (xs : Vector α n) (f : α → Vector β m) : Vector β (n * m)
        @[inline] def flatMap (xs : Vector α n) (f : α → Vector β m) : Vector β (n * m) :=
  ⟨xs.toArray.flatMap fun a => (f a).toArray, by simp [Array.map_const']⟩
        Vector.zipWithIndex
      abbrev
    
        @[deprecated zipIdx (since := "2025-01-21")]
abbrev zipWithIndex := @zipIdx
        Vector.zip
      definition
     (as : Vector α n) (bs : Vector β n) : Vector (α × β) n
        
      Vector.zipWith
      definition
     (f : α → β → φ) (as : Vector α n) (bs : Vector β n) : Vector φ n
        /-- Maps corresponding elements of two vectors of equal size using the function `f`. -/
@[inline] def zipWith (f : α → β → φ) (as : Vector α n) (bs : Vector β n) : Vector φ n :=
  ⟨as.toArray.zipWith f bs.toArray, by simp⟩
        Vector.unzip
      definition
     (xs : Vector (α × β) n) : Vector α n × Vector β n
        @[inline] def unzip (xs : Vector (α × β) n) : VectorVector α n × Vector β n :=
  ⟨⟨xs.toArray.unzip.1, by simp⟩, ⟨xs.toArray.unzip.2, by simp⟩⟩
        Vector.ofFn
      definition
     (f : Fin n → α) : Vector α n
        /-- The vector of length `n` whose `i`-th element is `f i`. -/
@[inline] def ofFn (f : Fin n → α) : Vector α n :=
  ⟨Array.ofFn f, by simp⟩
        Vector.swapIfInBounds
      definition
     (xs : Vector α n) (i j : Nat) : Vector α n
        /--
Swap two elements of a vector using `Nat` indices. Panics if either index is out of bounds.
This will perform the update destructively provided that the vector has a reference count of 1.
-/
@[inline] def swapIfInBounds (xs : Vector α n) (i j : Nat) : Vector α n :=
  ⟨xs.toArray.swapIfInBounds i j, by simp⟩
        Vector.swapAt!
      definition
     (xs : Vector α n) (i : Nat) (x : α) : α × Vector α n
        /--
Swaps an element of a vector with a given value using a `Nat` index. Panics if the index is out of
bounds. The original value is returned along with the updated vector.
This will perform the update destructively provided that the vector has a reference count of 1.
-/
@[inline] def swapAt! (xs : Vector α n) (i : Nat) (x : α) : α × Vector α n :=
  let a := xs.toArray.swapAt! i x
  ⟨a.fst, a.snd, by simp [a]⟩
        Vector.range
      definition
     (n : Nat) : Vector Nat n
        /-- The vector `#v[0, 1, 2, ..., n-1]`. -/
@[inline] def range (n : Nat) : Vector Nat n := ⟨Array.range n, by simp⟩
        Vector.isEqv
      definition
     (xs ys : Vector α n) (r : α → α → Bool) : Bool
        /--
Compares two vectors of the same size using a given boolean relation `r`. `isEqv v w r` returns
`true` if and only if `r v[i] w[i]` is true for all indices `i`.
-/
@[inline] def isEqv (xs ys : Vector α n) (r : α → α → Bool) : Bool :=
  Array.isEqvAux xs.toArray ys.toArray (by simp) r n (by simp)
        Vector.instBEq
      instance
     [BEq α] : BEq (Vector α n)
        
      Vector.reverse
      definition
     (xs : Vector α n) : Vector α n
        /-- Reverse the elements of a vector. -/
@[inline] def reverse (xs : Vector α n) : Vector α n :=
  ⟨xs.toArray.reverse, by simp⟩
        Vector.eraseIdx!
      definition
     (xs : Vector α n) (i : Nat) : Vector α (n - 1)
        /-- Delete an element of a vector using a `Nat` index. Panics if the index is out of bounds. -/
@[inline] def eraseIdx! (xs : Vector α n) (i : Nat) : Vector α (n-1) :=
  if _ : i < n then
    xs.eraseIdx i
  else
    have : Inhabited (Vector α (n-1)) := ⟨xs.pop⟩
    panic! "index out of bounds"
        Vector.insertIdx!
      definition
     (xs : Vector α n) (i : Nat) (x : α) : Vector α (n + 1)
        /-- Insert an element into a vector using a `Nat` index. Panics if the index is out of bounds. -/
@[inline] def insertIdx! (xs : Vector α n) (i : Nat) (x : α) : Vector α (n+1) :=
  if _ : i ≤ n then
    xs.insertIdx i x
  else
    have : Inhabited (Vector α (n+1)) := ⟨xs.push x⟩
    panic! "index out of bounds"
        Vector.tail
      definition
     (xs : Vector α n) : Vector α (n - 1)
        /-- Delete the first element of a vector. Returns the empty vector if the input vector is empty. -/
@[inline] def tail (xs : Vector α n) : Vector α (n-1) :=
  if _ : 0 < n then
    xs.eraseIdx 0
  else
    xs.cast (by omega)
        Vector.finIdxOf?
      definition
     [BEq α] (xs : Vector α n) (x : α) : Option (Fin n)
        /--
Finds the first index of a given value in a vector using `==` for comparison. Returns `none` if the
no element of the index matches the given value.
-/
@[inline] def finIdxOf? [BEq α] (xs : Vector α n) (x : α) : Option (Fin n) :=
  (xs.toArray.finIdxOf? x).map (Fin.cast xs.size_toArray)
        Vector.indexOf?
      abbrev
    
        @[deprecated finIdxOf? (since := "2025-01-29")]
abbrev indexOf? := @finIdxOf?
        Vector.findFinIdx?
      definition
     (p : α → Bool) (xs : Vector α n) : Option (Fin n)
        /-- Finds the first index of a given value in a vector using a predicate. Returns `none` if the
no element of the index matches the given value. -/
@[inline] def findFinIdx? (p : α → Bool) (xs : Vector α n) : Option (Fin n) :=
  (xs.toArray.findFinIdx? p).map (Fin.cast xs.size_toArray)
        Vector.findM?
      definition
     {α : Type} {m : Type → Type} [Monad m] (f : α → m Bool) (as : Vector α n) : m (Option α)
        
      Vector.findSomeM?
      definition
     [Monad m] (f : α → m (Option β)) (as : Vector α n) : m (Option β)
        @[inline] def findSomeM? [Monad m] (f : α → m (Option β)) (as : Vector α n) : m (Option β) :=
  as.toArray.findSomeM? f
        Vector.findRevM?
      definition
     {α : Type} {m : Type → Type} [Monad m] (f : α → m Bool) (as : Vector α n) : m (Option α)
        
      Vector.findSomeRevM?
      definition
     [Monad m] (f : α → m (Option β)) (as : Vector α n) : m (Option β)
        @[inline] def findSomeRevM? [Monad m] (f : α → m (Option β)) (as : Vector α n) : m (Option β) :=
  as.toArray.findSomeRevM? f
        Vector.find?
      definition
     {α : Type} (f : α → Bool) (as : Vector α n) : Option α
        
      Vector.findRev?
      definition
     {α : Type} (f : α → Bool) (as : Vector α n) : Option α
        
      Vector.findSome?
      definition
     (f : α → Option β) (as : Vector α n) : Option β
        
      Vector.findSomeRev?
      definition
     (f : α → Option β) (as : Vector α n) : Option β
        @[inline] def findSomeRev? (f : α → Option β) (as : Vector α n) : Option β :=
  as.toArray.findSomeRev? f
        Vector.isPrefixOf
      definition
     [BEq α] (xs : Vector α m) (ys : Vector α n) : Bool
        /-- Returns `true` when `xs` is a prefix of the vector `ys`. -/
@[inline] def isPrefixOf [BEq α] (xs : Vector α m) (ys : Vector α n) : Bool :=
  xs.toArray.isPrefixOf ys.toArray
        Vector.anyM
      definition
     [Monad m] (p : α → m Bool) (xs : Vector α n) : m Bool
        
      Vector.allM
      definition
     [Monad m] (p : α → m Bool) (xs : Vector α n) : m Bool
        
      Vector.any
      definition
     (xs : Vector α n) (p : α → Bool) : Bool
        
      Vector.all
      definition
     (xs : Vector α n) (p : α → Bool) : Bool
        
      Vector.countP
      definition
     (p : α → Bool) (xs : Vector α n) : Nat
        
      Vector.count
      definition
     [BEq α] (a : α) (xs : Vector α n) : Nat
        
      Vector.replace
      definition
     [BEq α] (xs : Vector α n) (a b : α) : Vector α n
        @[inline] def replace [BEq α] (xs : Vector α n) (a b : α) : Vector α n :=
  ⟨xs.toArray.replace a b, by simp⟩
        Vector.leftpad
      definition
     (n : Nat) (a : α) (xs : Vector α m) : Vector α (max n m)
        /--
Pad a vector on the left with a given element.
Note that we immediately simplify this to an `++` operation,
and do not provide separate verification theorems.
-/
@[inline, simp] def leftpad (n : Nat) (a : α) (xs : Vector α m) : Vector α (max n m) :=
  (replicate (n - m) a ++ xs).cast (by omega)
        Vector.rightpad
      definition
     (n : Nat) (a : α) (xs : Vector α m) : Vector α (max n m)
        /--
Pad a vector on the right with a given element.
Note that we immediately simplify this to an `++` operation,
and do not provide separate verification theorems.
-/
@[inline, simp] def rightpad (n : Nat) (a : α) (xs : Vector α m) : Vector α (max n m) :=
  (xs ++ replicate (n - m) a).cast (by omega)
        Vector.mem_toArray_iff
      theorem
     (a : α) (xs : Vector α n) : a ∈ xs.toArray ↔ a ∈ xs
        @[simp] theorem mem_toArray_iff (a : α) (xs : Vector α n) : a ∈ xs.toArraya ∈ xs.toArray ↔ a ∈ xs :=
  ⟨fun h => ⟨h⟩, fun ⟨h⟩ => h⟩
        Vector.instForIn'InferInstanceMembership
      instance
     : ForIn' m (Vector α n) α inferInstance
        instance : ForIn' m (Vector α n) α inferInstance where
  forIn' xs b f := Array.forIn' xs.toArray b (fun a h b => f a (by simpa using h) b)
        Vector.instForM
      instance
     : ForM m (Vector α n) α
        instance : ForM m (Vector α n) α where
  forM := Vector.forM
        Vector.forM_eq_forM
      theorem
     [Monad m] (f : α → m PUnit) : Vector.forM v f = forM v f
        @[simp] theorem forM_eq_forM [Monad m] (f : α → m PUnit) :
    Vector.forM v f = forM v f := rfl
        Vector.instToStreamSubarray
      instance
     : ToStream (Vector α n) (Subarray α)
        instance : ToStream (Vector α n) (Subarray α) where
  toStream xs := xs.toArray[:n]
        Vector.instLT
      instance
     [LT α] : LT (Vector α n)
        instance instLT [LT α] : LT (Vector α n) := ⟨fun xs ys => xs.toArray < ys.toArray⟩
        Vector.instLE
      instance
     [LT α] : LE (Vector α n)
        instance instLE [LT α] : LE (Vector α n) := ⟨fun xs ys => xs.toArray ≤ ys.toArray⟩