Informal description
For any natural numbers $s$, $m$, $n$, and $\mathit{step}$, the concatenation of the arithmetic sequences $\mathtt{range'}\,s\,m\,\mathit{step}$ and $\mathtt{range'}\,(s + \mathit{step} \cdot m)\,n\,\mathit{step}$ is equal to the arithmetic sequence $\mathtt{range'}\,s\,(m + n)\,\mathit{step}$.
In other words, the list $[s, s + \mathit{step}, \ldots, s + (m-1) \cdot \mathit{step}]$ concatenated with $[s + \mathit{step} \cdot m, s + \mathit{step} \cdot (m + 1), \ldots, s + \mathit{step} \cdot (m + n - 1)]$ equals $[s, s + \mathit{step}, \ldots, s + \mathit{step} \cdot (m + n - 1)]$.