Informal description
          Let $m$ be a lawful monad, $l$ a list of elements of type $\alpha$, and $f : (a : \alpha) \to a \in l \to \beta \to \beta$ a function. For any initial state $\text{init} \in \beta$, the monadic iteration `forIn'` over $l$ with the pure yielding function $\lambda a\,m\,b,\ \text{pure}\,(\text{ForInStep.yield}\,(f\,a\,m\,b))$ is equal to the pure monadic value of the left fold over the attached list $l.\text{attach}$ with the initial state $\text{init}$ and the function $\lambda b\,\langle a, h\rangle,\ f\,a\,h\,b$.
In symbols:
$$\text{forIn'}\ l\ \text{init}\ (\lambda a\,m\,b,\ \text{pure}\,(\text{ForInStep.yield}\,(f\,a\,m\,b))) = \text{pure}\,(l.\text{attach}.\text{foldl}\,(\lambda b\,\langle a, h\rangle,\ f\,a\,h\,b)\ \text{init})$$